Z
Z
Guest
I've been playing around with getting both gain and offset on a single non-
inverting op amp and I'm not quite getting how to calculate the offset
input voltage needed to get 1.27 volts out. I'm hoping someone might know
what I'm missing.
What I attempted was to get 2.5x gain with a +1.25 volt offset - so a zero
volt input on the non-inverting input would give 1.25 volts out while a 1
volt input would give 3.75 volts out.
At first, I thought that since there was to be a 2.5x gain, I needed to add
-1.25/2.5= -0.5V to the inverting input. I used a voltage divider to create
the -0.5V. from the -5V supply.
Next I went to tackle the gain. I calculated the thevenin equivilent
resistance of the voltage divider then calculated the size of the feedback
resistor and put it all together on a breadboard.
I got the gain right - but with 0V in I get 0.750V out - which is only 1.5
times the offset voltage I supplied. Ok, so my assumption about the affect
of gain on the supplied offset voltage was wrong - I went looking on google
to see if I could find out how to calculate the voltage required: two days
ago!
To sum up: I'm using an LMC6482 CMOS amp with 10 teraohm input impedance.
Input signal is a 10k resistor to either ground or a voltage divider
putting out 1V. I can calculate the gain with Thevenin's but I cannot
figure out how to calculate the offset voltage required.
Anyone able to steer me in the right direction?
P.S. I have this working with two opamps (one chip). Its just bugging me
that I cannot figure out how to do it with a single stage.
inverting op amp and I'm not quite getting how to calculate the offset
input voltage needed to get 1.27 volts out. I'm hoping someone might know
what I'm missing.
What I attempted was to get 2.5x gain with a +1.25 volt offset - so a zero
volt input on the non-inverting input would give 1.25 volts out while a 1
volt input would give 3.75 volts out.
At first, I thought that since there was to be a 2.5x gain, I needed to add
-1.25/2.5= -0.5V to the inverting input. I used a voltage divider to create
the -0.5V. from the -5V supply.
Next I went to tackle the gain. I calculated the thevenin equivilent
resistance of the voltage divider then calculated the size of the feedback
resistor and put it all together on a breadboard.
I got the gain right - but with 0V in I get 0.750V out - which is only 1.5
times the offset voltage I supplied. Ok, so my assumption about the affect
of gain on the supplied offset voltage was wrong - I went looking on google
to see if I could find out how to calculate the voltage required: two days
ago!
To sum up: I'm using an LMC6482 CMOS amp with 10 teraohm input impedance.
Input signal is a 10k resistor to either ground or a voltage divider
putting out 1V. I can calculate the gain with Thevenin's but I cannot
figure out how to calculate the offset voltage required.
Anyone able to steer me in the right direction?
P.S. I have this working with two opamps (one chip). Its just bugging me
that I cannot figure out how to do it with a single stage.