J
JJD
Guest
Hello all, this is my first post.
C question:
I understand that the equation i = C*dv/dt tells me that if there is
an instantaneous change in voltage across a cap, that would require an
infinite amount of current through it.
If I charge a cap, remove it and "hold it", and put a dieletric
material, k, between the plates, then there is an instantaneous change
in voltage (decrease) right? q and C increase and V decreases, but i =
0. I know that any energy lost is applied to the physical motion of
the k material. How does all of this make sense?
i = C*dv/dt, q = C*V, C = k*Cair(the capacitance in air)
L question:
If I have a simple L, Vs and switch series circuit, when I open the
switch there should be an infinite V across the open switch, there is
arching for a split second, but how much V is there across the switch
in real life?
Thanks in advance.
C question:
I understand that the equation i = C*dv/dt tells me that if there is
an instantaneous change in voltage across a cap, that would require an
infinite amount of current through it.
If I charge a cap, remove it and "hold it", and put a dieletric
material, k, between the plates, then there is an instantaneous change
in voltage (decrease) right? q and C increase and V decreases, but i =
0. I know that any energy lost is applied to the physical motion of
the k material. How does all of this make sense?
i = C*dv/dt, q = C*V, C = k*Cair(the capacitance in air)
L question:
If I have a simple L, Vs and switch series circuit, when I open the
switch there should be an infinite V across the open switch, there is
arching for a split second, but how much V is there across the switch
in real life?
Thanks in advance.