high voltage PNP

S

Scott Seidman

Guest
I can't seem to find any pnp transistors with a Vce bigger than 500V. I'd
like one that can go to 1K for use with a current sense. Any pointers??


--
Scott
Reverse name to reply
 
legg <legg@nospam.magma.ca> wrote in
news:35v314dj3rukh98bta490ghnemueh61ode@4ax.com:

On 25 Apr 2008 13:19:00 GMT, Scott Seidman
namdiesttocs@mindspring.com> wrote:


I can't seem to find any pnp transistors with a Vce bigger than 500V.
I'd like one that can go to 1K for use with a current sense. Any
pointers??

Wrong decade, wrong technology. Think of another way.

If linearity is not required (ie limiting only) think of
amplitude-triggered communication methods. They aresimpler to develop.

RL
I'm trying to find a bigger transistor to use with the AD8212 High Voltage
Current Shunt Monitor. Adding the external transistor buys me a common
mode voltage capablility of Vce, totally braindead, but I can't find
anything greater than 500V.

--
Scott
Reverse name to reply
 
legg <legg@nospam.magma.ca> wrote in
news:35v314dj3rukh98bta490ghnemueh61ode@4ax.com:

On 25 Apr 2008 13:19:00 GMT, Scott Seidman
namdiesttocs@mindspring.com> wrote:


I can't seem to find any pnp transistors with a Vce bigger than 500V.
I'd like one that can go to 1K for use with a current sense. Any
pointers??

Wrong decade, wrong technology. Think of another way.

If linearity is not required (ie limiting only) think of
amplitude-triggered communication methods. They aresimpler to develop.

RL
I'm trying to find a bigger transistor to use with the AD8212 High Voltage
Current Shunt Monitor. Adding the external transistor buys me a common
mode voltage capablility of Vce, totally braindead, but I can't find
anything greater than 500V.

--
Scott
Reverse name to reply
 
On 25 Apr 2008 13:19:00 GMT, Scott Seidman
<namdiesttocs@mindspring.com> wrote:

I can't seem to find any pnp transistors with a Vce bigger than 500V. I'd
like one that can go to 1K for use with a current sense. Any pointers??
Wrong decade, wrong technology. Think of another way.

If linearity is not required (ie limiting only) think of
amplitude-triggered communication methods. They aresimpler to develop.

RL
 
Scott Seidman wrote:
I can't seem to find any pnp transistors with a Vce bigger than 500V. I'd
like one that can go to 1K for use with a current sense. Any pointers??
Looks like the FMMT560 with 500V is pretty much the end of the rope when
it comes to commonly available parts. The IXTH10P60 goes to 600V but
it's a (largish and expensive) p-channel FET.

--
Regards, Joerg

http://www.analogconsultants.com/

"gmail" domain blocked because of excessive spam.
Use another domain or send PM.
 
On 25 Apr 2008 17:27:48 GMT, Scott Seidman
<namdiesttocs@mindspring.com> wrote:



I'm trying to find a bigger transistor to use with the AD8212 High Voltage
Current Shunt Monitor. Adding the external transistor buys me a common
mode voltage capablility of Vce, totally braindead, but I can't find
anything greater than 500V.
So you need linearity, huh.....?

Try sticking your AD8212 output collector's constant current through
the source of a p-channel fet, with the fet gate on the AD8212
'common' terminal. I assume you're getting well-decoupled power from
somewhere to run this thing. That should give current info over the
fet drain's compliance, if the added capacitance can be suffered at
the receiving end.

There are also methods of stringing 'transmitters' in series, with
their bases (or gates) on a HV divider. Each collector feeds an
emitter (or source) farther down the resistive divider.

Being brain dead isn't something you should be aiming to achieve,
despite what your boss tells you.

RL
 
On Fri, 25 Apr 2008 23:11:18 -0400, legg <legg@nospam.magma.ca> wrote:

On 25 Apr 2008 17:27:48 GMT, Scott Seidman
namdiesttocs@mindspring.com> wrote:



I'm trying to find a bigger transistor to use with the AD8212 High Voltage
Current Shunt Monitor. Adding the external transistor buys me a common
mode voltage capablility of Vce, totally braindead, but I can't find
anything greater than 500V.

There are also methods of stringing 'transmitters' in series, with
their bases (or gates) on a HV divider. Each collector feeds an
emitter (or source) farther down the resistive divider.
See a pdf swcadiii model illustrating a sensor using the pnp bipolar
string on abse.

RL

Version 4
SHEET 1 880 680
WIRE -304 -32 -432 -32
WIRE -144 -32 -304 -32
WIRE -48 -32 -144 -32
WIRE 96 -32 32 -32
WIRE 240 -32 96 -32
WIRE 320 -32 240 -32
WIRE 480 -32 320 -32
WIRE 560 -32 480 -32
WIRE 240 0 240 -32
WIRE -144 16 -144 -32
WIRE -16 16 -144 16
WIRE 320 16 320 -32
WIRE -304 32 -304 -32
WIRE -304 32 -320 32
WIRE -272 32 -304 32
WIRE -432 48 -432 -32
WIRE -320 64 -320 32
WIRE -272 64 -272 32
WIRE -48 64 -176 64
WIRE 96 64 96 -32
WIRE 96 64 32 64
WIRE -144 112 -144 96
WIRE -80 112 -144 112
WIRE 48 112 -80 112
WIRE 80 112 48 112
WIRE 320 112 320 96
WIRE 320 112 160 112
WIRE 320 128 320 112
WIRE -16 144 -16 16
WIRE -320 160 -320 128
WIRE -288 160 -320 160
WIRE -272 160 -272 128
WIRE -272 160 -288 160
WIRE -80 160 -80 112
WIRE -48 160 -80 160
WIRE 48 176 16 176
WIRE 144 176 48 176
WIRE 240 176 240 80
WIRE 240 176 224 176
WIRE 256 176 240 176
WIRE 480 176 480 -32
WIRE -432 192 -432 128
WIRE -176 192 -176 64
WIRE -48 192 -176 192
WIRE 560 192 560 -32
WIRE -288 240 -288 160
WIRE -192 240 -288 240
WIRE -48 240 -192 240
WIRE -16 240 -16 208
WIRE -16 240 -48 240
WIRE 208 240 176 240
WIRE 320 240 320 224
WIRE 320 240 272 240
WIRE -48 256 -48 240
WIRE 320 256 320 240
WIRE 176 304 176 240
WIRE 256 304 176 304
WIRE -192 336 -192 320
WIRE 176 336 176 304
WIRE 176 336 -192 336
WIRE 320 368 320 352
WIRE -432 448 -432 272
WIRE -192 448 -192 416
WIRE -192 448 -432 448
WIRE 320 448 -192 448
WIRE 480 448 480 256
WIRE 480 448 320 448
WIRE 560 448 560 256
WIRE 560 448 480 448
FLAG -48 256 0
SYMBOL Opamps\\LT1366 -16 112 R0
WINDOW 0 23 122 Left 0
SYMATTR InstName U1
SYMBOL res -160 0 R0
WINDOW 3 36 36 Left 0
WINDOW 0 -43 35 Left 0
SYMATTR Value 4K99
SYMATTR InstName R1
SYMBOL res 176 96 R90
WINDOW 0 0 81 VBottom 0
WINDOW 3 -27 27 VTop 0
SYMATTR InstName R2
SYMATTR Value 100K
SYMBOL res 240 160 R90
WINDOW 0 0 81 VBottom 0
WINDOW 3 -27 42 VTop 0
SYMATTR InstName R3
SYMATTR Value 1K
SYMBOL res 304 0 R0
WINDOW 0 46 25 Left 0
WINDOW 3 41 57 Left 0
SYMATTR InstName R4
SYMATTR Value 10K
SYMBOL res 48 48 R90
WINDOW 0 -1 87 VBottom 0
WINDOW 3 -27 24 VTop 0
SYMATTR InstName R5
SYMATTR Value 4K99
SYMBOL res 336 464 R180
WINDOW 0 36 76 Left 0
WINDOW 3 36 40 Left 0
SYMATTR InstName R6
SYMATTR Value 10K
SYMBOL res -176 336 R180
WINDOW 0 -44 71 Left 0
WINDOW 3 -57 38 Left 0
SYMATTR InstName R7
SYMATTR Value 220K
SYMBOL cap -288 64 R0
SYMATTR InstName C1
SYMATTR Value 1E-8
SYMBOL cap 32 112 R0
WINDOW 0 24 18 Left 0
WINDOW 3 19 49 Left 0
SYMATTR InstName C2
SYMATTR Value 1E-10
SYMBOL zener -304 128 R180
WINDOW 0 24 72 Left 0
WINDOW 3 -62 -51 Left 0
SYMATTR InstName D1
SYMATTR Value BZX84C10L
SYMBOL res 48 -48 R90
WINDOW 0 57 91 VBottom 0
WINDOW 3 30 45 VTop 0
SYMATTR InstName R8
SYMATTR Value .05
SYMBOL res 464 160 R0
SYMATTR InstName R9
SYMATTR Value 400
SYMBOL cap 544 192 R0
SYMATTR InstName C3
SYMATTR Value 47E-6
SYMBOL voltage -432 176 R0
WINDOW 3 -35 299 Left 0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR Value PWL(0 0 1E-3 400 2E-3 395 3E-3 400 4E-3 395 5E-3 400)
SYMATTR InstName V1
SYMBOL voltage -432 32 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
WINDOW 3 -58 -17 Left 0
SYMATTR Value SINE(0 1 2500)
SYMATTR InstName V2
SYMBOL pnp 256 224 M180
SYMATTR InstName Q1
SYMBOL res 224 -16 R0
SYMATTR InstName R10
SYMATTR Value 10K
SYMBOL pnp 256 352 M180
SYMATTR InstName Q2
SYMBOL res -208 320 R0
WINDOW 0 42 44 Left 0
SYMATTR InstName R11
SYMATTR Value 220K
SYMBOL diode 208 256 R270
WINDOW 0 32 32 VTop 0
WINDOW 3 0 32 VBottom 0
SYMATTR InstName D2
TEXT -464 504 Left 0 !.tran 0 6E-3 2E-5
 

Welcome to EDABoard.com

Sponsor

Back
Top